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Abstract—In this two-part paper, the problem of channel
estimation in Ultra Wide-Band (UWB) systems is investigated. In
Part I, a novel Hybrid Sparse/Diffuse (HSD) model is proposed
for the UWB channel, and new channel estimation strategies are
designed for this model. In this paper (Part II), a Mean-Squared
Error (MSE) analysis of the Generalized MMSE and Generalized
Thresholding Estimators developed in Part I is performed, for
the asymptotic regimes of low and high SNR. The analysis
quantifies the achievable MSE performance of these schemes
over unstructured estimators. Specifically, we prove that it is
beneficial to be conservative in the estimation of the sparse
component, i.e., to assume that the sparse component is sparser
than it actually is. Moreover, we analyze the scenario with a non-
orthogonal pilot sequence, and establish a connection between
the Generalized Thresholding estimator and conventional sparse
approximation algorithms proposed in the literature. In addition
to the theoretical analysis, these channel estimation schemes are
evaluated in a more realistic geometry-based channel emulator,
for which the HSD model developed in Part I is an approxi-
mation. The numerical results are shown to match the expected
asymptotic MSE behavior. Moreover, the proposed estimation
techniques are shown to outperform conventional unstructured
and purely sparse estimators, from both an MSE and a bit error
rate perspectives, even for the realistic geometry-based channel
model.

I. INTRODUCTION

Ultra Wide-Band (UWB) signaling had been originally
proposed as a technology for indoor mobile and multiple-
access communications [1]–[3]. Due to its significant band-
width, UWB offers high precision localization [4], robustness
against multipath fading [5] and immunity to narrow-band
interference [6], thus representing a compelling solution for
applications such as short-range high-speed broadband access
[7], Wireless Body Area Networks (WBANs) [8], covert
communication links, through-wall imaging, high-resolution
ground-penetrating radar and asset tracking [9]–[11]. However,
the performance of coherent UWB transceivers relies on the
availability of accurate channel estimates (e.g., [12]–[14]).
Thus, it is important to design channel estimation strategies
that exploit the structural and statistical properties of UWB
propagation to achieve the best estimation accuracy.
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In the literature, different UWB channel models have
been proposed, based on extensive measurement campaigns,
e.g., geometry-based, clustered Saleh-Valenzuela [10], [15] or
dense models [16]. An overview of ray-tracing and statistical
channel models is available in [17] from one of the authors. A
generalization of the Saleh-Valenzuela model [15] is presented
in [10] and provides a parametrization for different environ-
ments of interest, e.g., residential indoor, office indoor, built-
up outdoor, industrial indoor, farm environments, and WBANs.
According to this model, the UWB channel is represented as a
clustered pattern of arrivals of MultiPath Components (MPCs).
Moreover, it presents a dense model for industrial environ-
ments and WBANs, where the richer interaction among MPCs
gives rise to multipath fading. On the other hand, [18], [19]
adopt an hybrid model, combining both a geometric approach
for the resolvable individual specular components (echoes),
arising from reflections from the scatterers in the environment,
and a statistical approach to model the diffuse component of
the channel. While in [18] the diffuse component is modeled as
a diffuse tail associated with each MPC, [19] uses a different
approach, and models the diffuse component as independent
of the resolvable MPCs arrivals.

Due to the hybrid nature of UWB propagation, in Part
I of this paper [20] (henceforth simply referred to as "Part
I"), we have proposed a novel Hybrid Sparse/Diffuse (HSD)
model, which is able to capture the main UWB propagation
phenomena. Specifically, this model combines a sparse compo-
nent, which models the fine grained delay resolution of UWB
receivers, and a diffuse component, which models other effects
not properly described by a sparse channel representation,
namely, diffuse scattering from rough surfaces, unresolvable
MPCs and frequency dispersion. Moreover, we have de-
signed the Generalized MMSE (GMMSE) and the Generalized
Thresholding (GThres) channel estimation schemes.

Our contributions are as follows: following Part I of this
paper, here in Part II we present a Mean-Squared Error
(MSE) analysis of the GMMSE and GThres estimators, in
the asymptotic regimes of high and low Signal to Noise Ratios
(SNR). In particular, we prove that, in these regimes, it is
beneficial, from the perspective of minimizing the MSE, to
use a conservative approach in the estimation of the sparse
component of the channel, by assuming the sparse component
to be sparser than it actually is. Also, we prove that the
GMMSE estimator outperforms the GThres estimator in these
regimes. Moreover, we analyze the scenario with a non-
orthogonal pilot sequence, and establish a connection between
the GThres estimator and conventional sparse approximation
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algorithms proposed in the literature. Finally, we evaluate the
simplified HSD model and the designed channel estimation
strategies based on a realistic UWB channel emulator. In
particular, we adopt the channel emulator developed in [18].
We observe that the model in [19] which assumes statistically
independent sparse and diffuse components is closer to our
proposed HSD model; however, we believe the model of [18]
may be more physically accurate and thus we select [18] to
validate the accuracy of our proposed schemes. Thus, using
[18] we are able to evaluate the robustness and sensitivity of
the HSD-based estimation strategies. We show that the new
estimation schemes outperform conventional unstructured esti-
mators, e.g., Least Squares (LS), and purely sparse estimators,
from both an MSE and a Bit Error Rate (BER) perspectives.
The simulation results show that, despite its simplicity, the
HSD model can effectively capture key UWB propagation
mechanisms. Moreover, we argue that, due to its hybrid nature,
this model easily accommodates a wide range of practical
scenarios, where the channel exhibits a purely sparse, diffuse
or hybrid nature.

The paper is organized as follows: in Section II, we
present the system model, and review the HSD channel
model developed in Part I. In Section III, we review the
GMMSE and GThres estimators. In Section IV, we perform
an asymptotic MSE analysis of these estimation schemes, and
we discuss the results. In Section V, we analyze the case with
a non-orthogonal pilot sequence. In Section VI, we present
simulation results for both a channel that follows the HSD
model, and a more realistic geometry-based stochastic channel
emulator developed in [18]. Section VII concludes the paper.
The Appendix provides the derivations of key lemmas which
enable the analysis in Section IV.

Notation: We use lower-case and upper-case bold letters for
column vectors (a) and matrices (A), respectively. The scalar
ak (or a(k)) is the kth entry of vector a, and Ak,j (or A(k, j))
is the (k, j)th entry of matrix A. A positive definite (positive
semi-definite) matrix A is denoted by A � 0 (A � 0). The
transpose, complex conjugate of matrix A is denoted by A∗.
If A � 0 with eigenvalue decomposition A = UDU∗, we
define its square root as

√
A = U

√
DU∗. The matrix IK

is the K × K unit matrix. The trace operator is denoted by
tr (A) =

∑
k Ak,k. The vector a � b is the component-

wise (Schur) product of vectors a and b. We use p(·) to
indicate a continuous or discrete probability distribution. The
expectation of random variable x, conditioned on y, is written
as E [x|y]. The circular Gaussian distribution with mean m
and covariance Σ is denoted by CN (m,Σ),1 the Bernoulli
distribution with parameter q by B(q), and the exponential
distribution with mean m by E(m). The indicator function is
denoted by I (·).

II. SYSTEM MODEL

We adopt the same signal model as in Part I. Namely,
we consider a single-user UWB system. The source trans-
mits a sequence of M = N + L − 1 pilot symbols,

1For a vector x = xR + ixI ∼ CN (0,Σ), where xR = Re(x) and
xI = Im(x), we define the covariance matrices of its real and imaginary parts
as E[xRx∗

R] = E[xIx∗
I ] =

Re(Σ)
2

and E[xIx∗
R] = −E[xRx∗

I ] =
Im(Σ)

2
.

x(k), k = −(L − 1), . . . , N − 1, over a channel h(l), l =
0, . . . , L − 1 with delay spread L ≥ 1. The received, dis-
crete time, baseband signal over the corresponding obser-
vation interval of duration N is denoted by y(k), k =
0, . . . , N − 1. Letting y = [y(0), y(1), . . . , y(N − 1)]

T , h =
[h(0), h(1), . . . , h(L− 1)]

T , we have the matrix representa-
tion y = Xh + w, where X ∈ CN×L is the N × L Toeplitz
matrix associated with the pilot sequence, having the vector
[x(−k), x(−k + 1), . . . , x(−k +N − 1)]

T
, k = 0, . . . , L− 1,

as its kth column, and w ∼ CN (0, σ2
wIL) is the noise vector.

The HSD model, developed in Part I [20] and [21] for the
UWB channel h, is given by

h = as � cs + hd, (1)

where the term as � cs ∈ CL represents the sparse compo-
nent,2 and hd ∈ CL is the diffuse component. In particular,
as ∼ B(q)L is the sparsity pattern, with q � 1 so as to
enforce sparsity. The positions of the “1“s correspond to the
delays of the resolvable MPCs. In the sequel, we refer to the
non-zero entries of the sparse vector as � cs ∈ CL as active
sparse components.

The vector cs ∈ CL carries the sparse coefficients, drawn
from the continuous probability distribution p(cs), with second
order moment E [csc

∗
s] = Λs, where Λs is a diagonal matrix

with diagonal elements given by the Power Delay Profile
(PDP) of the active sparse components Λs(k, k) = Ps(k),∀k.

Finally, we use the Rayleigh fading assumption for the dif-
fuse component hd ∼ CN (0,Λd), where Λd is diagonal, with
diagonal entries given by the PDP Λd(k, k) = Pd(k), k =
0, . . . , L− 1.

Since the LS estimate is a sufficient statistic of the channel
(see, e.g., [20]), we consider the effective model

hLS = (X∗X)
−1

X∗y = h +
√

S
−1

n, (2)

where we have defined the SNR matrix S = X∗X
σ2
w

, and the

noise vector n = 1
σ2
w

√
S
−1

X∗w ∼ CN (0, IL). We will refer
to this sufficient representation of the observation model in
the following treatment. In particular, with a slight abuse of
notation, we will refer to hLS as the observed sequence.

In the sequel, as in Part I [20], we assume an orthogonal
pilot sequence, so that S is diagonal. Under this assumption,
the samples of the LS estimate are independent and a per-
tap, rather than joint, estimation approach is optimal. We
will discuss the non-orthogonal case in Section V, where we
establish a connection between the GThres estimator and the
sparse approximation algorithm proposed in [22].

III. REVIEW OF THE ESTIMATORS

In Part I, we have developed channel estimation strategies
based on the HSD model. In particular, we have proposed the
GMMSE and GThres estimators, for the scenario where the
PDP of hd, Λd, is known at the receiver, whereas the vector
of sparse coefficients cs and the sparsity level q are treated as

2In the following, we use the terms sparse, specular and resolvable MPCs
interchangeably. In fact, the physical specular components (resolvable MPCs)
of the channel can be modeled and represented by a sparse vector.
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deterministic and unknown parameters. These estimators are
reviewed in this section.

Let q̃ ∈ (0, 1) be the prior Bernoulli parameter for the
generation of the sparsity pattern as, assumed in the estimation
phase, and α = ln

(
1−q̃
q̃

)
. Note that we may have q̃ 6= q,

i.e., the assumed prior may be different from the true prior
generating the sequence as.

The GMMSE and GThres estimators compute an LS
estimate of the sparse coefficient vector cs, given by ĉs = hLS.
Then, the sparsity pattern as is estimated by MMSE or MAP,
respectively, yielding the estimate âs. Finally, an MMSE
estimate of the diffuse component hd is computed based on
the residual LS error, hLS − âs � ĉs. The overall estimate is
given by

ĥ(k)= âs(k)hLS(k)+(1− âs(k))
Sk,kPd(k)

1+Sk,kPd(k)
hLS(k). (3)

The two estimators differ in the estimate of the sparsity pat-
tern as. Namely, GMMSE and GThres performs an MMSE
and an MAP estimate of as, respectively, assuming the prior
as ∼ B(q̃)L. We haveâ

(GMMSE)
s (k) =

(
1 + eα exp

{
−Sk,k|hLS(k)|2

1+Sk,kPd(k)

})−1

â
(GThres)
s (k) = I

(
|hLS(k)|2 ≥ α (1/Sk,k + Pd(k))

)
.

(4)

Note that the GThres estimator leads to a thresholding of the
LS estimate, where the threshold
α (1/Sk,k + Pd(k)) represents the effective noise background
for the estimation of the sparse component, scaled by the
parameter α = ln

(
1−q̃
q̃

)
, which is related to the assumed

sparsity level of the channel: in the positions where the LS
samples are above the threshold, the channel is estimated
as being a combination of specular and diffuse components;
otherwise, it is estimated as being diffuse only.

It is worth noting that, in the derivation of these estimators
and in the MSE analysis in Section IV, we assume that the
PDP of hd is known at the receiver. In practice, Pd(k) must be
estimated. In Part I [20], we have developed a PDP estimator
of hd based on the Expectation-Maximization (EM) algorithm,
assuming an exponential structure of the PDP [16], [19], [23],
which is exploited to average the fading over the channel
delay dimension rather than over subsequent realizations of
the fading process.

The true value of q is unknown in practice, and therefore
these estimators use an estimate or a guess q̃ of q. In the
next section, we perform an asymptotic MSE analysis of the
GMMSE and GThres estimators, in the high and low SNR
regions, and we prove that using q̃ < q in the estimation
process leads to improved MSE, thus suggesting that the
knowledge of q is not crucial to achieve high accuracy.

IV. MSE ANALYSIS

Let ĥ(X), X ∈ {GMMSE,GThres,LS} be either the
GMMSE, the GThres or the LS estimator. We define the
MSE of ĥ(X) as a function of the SNR matrix S as

MSE(X)(S)=
1

L
E
[∥∥∥ĥ(X)−h

∥∥∥2

2

]
=

1

L

∑
k

MSE
(X)
k (Sk,k) , (5)

where, owing to the use of per-tap estimation approaches, the
sum is over the MSE terms associated with the estimation of
the kth channel coefficient, i.e.,

MSE
(X)
k (Sk,k) = E

[∣∣∣ĥ(X)(k)− h(k)
∣∣∣2] . (6)

The expectation is computed with respect to the joint probabil-
ity distribution p(as)p(cs)p(hd)p(n). In this section, we study
the asymptotic behavior of each term MSE

(X)
k (Sk,k) , k =

0, . . . , L − 1, in the limit of high (Sk,k → +∞) and low
(Sk,k → 0+) SNR.

For the sake of a more concise notation, we define y =
hLS(k), ĥ(y) = ĥ(k), as = as(k), cs = cs(k), hd =

1√
Pd(k)

hd(k) (normalized to have unit variance), h = h(k),

n = n(k), S = Sk,k and Pd = Pd(k). From (1) and (2), we
can then rewrite the observation model associated with the kth
channel entry as

y = ascs +
√
Pdhd +

1√
S
n, (7)

where as ∼ B(q), hd ∼ CN (0, 1), n ∼ CN (0, 1).
For the LS estimator, we have mse

(LS)
k (S) ,

SMSE
(LS)
k (S) = E

[
S |y − h|2

]
= 1. Hence, the normalized

MSE, mse
(LS)
k (S), is a constant, independent of the SNR.

Herein, we show that the GMMSE and GThres estimators
exhibit the same behavior in the asymptotic high and low
SNR, i.e., letting mse

(X)
k (S) , SMSE

(X)
k (S) , we have

lim
S→0(∞)

mse
(X)
k (S) = const. > 0, X ∈ {GMMSE,GThres},

for a proper constant, which depends on the asymptotic regime
and on the estimator. To this end, let

f (X)
(√

Sy, n
)

= S
∣∣∣ĥ (y)− h

∣∣∣2 . (8)

Then, we have

mse
(X)
k (S) = E

[
f (X)

(√
Sh+ n, n

)]
, (9)

where the expectation is calculated with respect to h = ascs+√
Pdhd and n ∼ CN (0, 1), which are independent of the SNR

S. From Lemma 1 in the Appendix, we can exchange the limit
operator with the expectation, yielding, for Slim ∈ {0,+∞},

lim
S→Slim

mse
(X)
k (S) = E

[
lim

S→Slim

f (X)
(√

Sh+ n, n
)]
. (10)

We evaluate (10) for the GMMSE and GThres estimators
in Sections IV-A and IV-B, respectively.

A. Generalized MMSE estimator

Substituting the expression of the GMMSE estimator (3)
and (4) in (8), we obtain, after some algebraic manipulation,

f (GMMSE)
(√

Sy, n
)

=

∣∣∣∣∣∣n−
eα exp

{
−S|y|2
1+SPd

} √
Sy

1+SPd

1 + eα exp
{
−S|y|2
1+SPd

}
∣∣∣∣∣∣
2

. (11)

We distinguish the three cases S → +∞ with Pd = 0,
S → +∞ with Pd > 0, and S → 0.
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1) High SNR with no diffuse component: S → +∞, Pd =
0:
When Pd = 0, we have

√
Sy =

√
Sascs + n and

f (GMMSE)
(√

Sascs + n, n
)

=∣∣∣∣∣∣∣∣n−
eα exp

{
−
∣∣∣√Sascs + n

∣∣∣2}
1 + eα exp

{
−
∣∣∣√Sascs + n

∣∣∣2}
(√

Sascs + n
)∣∣∣∣∣∣∣∣

2

.

In the limit of high SNR, we obtain lim
S→+∞

f (GMMSE)
(√

Scs + n, n
)

= |n|2 , as = 1, a.e.,

lim
S→+∞

f (GMMSE) (n, n) = |n|2

(1+eα exp{−|n|2})2 , as = 0,

where a.e. stands for almost everywhere, i.e., the limit holds
except on a set with probability measure zero. In particular,
this set is given by {cs = 0}, which has probability measure
zero since cs is a continuous random variable. From (10), by
averaging over as ∼ B(q) and n ∼ CN (0, 1), we thus obtain

lim
S→+∞

mse
(GMMSE)
k (S) = qE

[
|n|2

]
(12)

+ (1− q)E

 |n|2(
1 + eα exp

{
− |n|2

})2

 = q + (1− q)g(α),

where we have defined g(α) = e−α ln (1 + eα) and we have
used Lemma 2 in the Appendix.

Therefore, in the high SNR regime (i.e., letting σ2
w → 0,

which scales the SNR matrix S to infinity) with no diffuse
component, Pd(k) = 0,∀k, using (5), we obtain the following
limiting MSE behavior:

MSE(GMMSE)(S) =
1

L

L−1∑
k=0

mse
(GMMSE)
k (Sk,k)

Sk,k
(13)

'∞ MSE(LS)(S) (q + (1− q)g(α)) ,

where we have defined '∞ as the high SNR approxima-
tion, and we have denoted the MSE of the LS estimator as
MSE(LS)(S) = 1

L tr
(
S−1

)
.

2) High SNR with diffuse component: S → +∞, Pd > 0:
From (11), we have limS→+∞ f (GMMSE)

(√
Sh+ n, n

)
=

|n|2. Then, from (10),

lim
S→+∞

mse
(GMMSE)
k (S) = E

[
|n|2

]
= 1. (14)

From (5), the limiting behavior of the overall MSE in the high
SNR, with Pd(k) > 0,∀k, is given by

MSE(GMMSE)(S) '∞ MSE(LS)(S). (15)

3) Low SNR: S → 0:
From (11), we have

lim
S→0

f (GMMSE)
(√

Sh+ n, n
)

=

∣∣∣∣∣∣ n

1 + eα exp
{
− |n|2

}
∣∣∣∣∣∣
2

.

Then, using (10) and Lemma 2 in the Appendix, we obtain

lim
S→0

mse
(GMMSE)
k (S)=E


∣∣∣∣∣∣ n

1 + eα exp
{
− |n|2

}
∣∣∣∣∣∣
2
=g(α).

Then, from (5), the overall MSE in the low SNR regime
behaves like

MSE(GMMSE)(S) '0 MSE(LS)(S)g(α), (16)

where we have defined '0 as the low SNR approximation.

B. Generalized Thresholding estimator

Substituting the expression of the GThres estimator (3) and
(4) in (8), we obtain, after some algebraic manipulation,

f (GThres)
(√

Sh+ n, n
)
=I
(∣∣∣√Sh+ n

∣∣∣2≥α(1 + SPd)

)
|n|2

+ I
(∣∣∣√Sh+ n

∣∣∣2<α(1 + SPd)

)∣∣∣∣∣
√
Sh− SPdn
1 + SPd

∣∣∣∣∣
2

. (17)

Note that, if α ≤ 0, then we have a trivial thresholding
operation, and the estimator is equivalent to LS. This case
is of no interest. In the following, therefore, we study the case
α > 0.

Similarly to the GMMSE estimator, we distinguish the three
cases S → +∞ with Pd = 0, S → +∞ with Pd > 0, and
S → 0.

1) High SNR with no diffuse component: S → +∞, Pd =
0:
When Pd = 0 we have y = ascs +

√
S
−1
n and

f (GThres)
(√

Sascs + n, n
)

= I
(∣∣∣√Sascs + n

∣∣∣2 ≥ α) |n|2
+ I

(∣∣∣√Sascs + n
∣∣∣2 < α

) ∣∣∣√Sascs∣∣∣2 . (18)

We have
lim

S→+∞
f (GThres)

(√
Scs + n, n

)
= |n|2 , as = 1, a.e.,

lim
S→+∞

f (GThres) (n, n) = I
(
|n|2 ≥ α

)
|n|2 , as = 0,

where the first limit holds a.e., i.e., except on the set with zero
probability measure {cs = 0}. From (10), we then obtain

lim
S→+∞

mse
(GThres)
k (S) = qE

[
|n|2

]
(19)

+ (1− q)E
[
I
(
|n|2 ≥ α

)
|n|2

]
= q + (1− q)w(α),

where in the last step we have used the fact that |n|2 ∼ E (1)
to compute the second expectation term, and we have defined
w(α) = e−α (1 + α).

Then, from (5), the overall MSE in the high SNR regime
with Pd(k) = 0,∀k, behaves like

MSE(GThres)(S) '∞ MSE(LS)(S)
(
q + (1− q)e−α (1 + α)

)
.
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2) High SNR with diffuse component: S → +∞, Pd > 0:
From (17), we have lim

S→+∞
f (GThres)

(√
Sh+ n, n

)
= |n|2.

Then, from (10), we obtain

lim
S→+∞

mse
(GThres)
k (S) = E

[
|n|2

]
= 1. (20)

Therefore, in the high SNR regime with Pd(k) > 0,∀k, the
GThres estimator performs like

MSE(GThres) (S) '∞ MSE(LS) (S) . (21)

3) Low SNR: S → 0:
From (17), we have

lim
S→0

f (GThres)
(√

Sh+ n, n
)

= I
(
|n|2 ≥ α

)
|n|2 . (22)

Then, from (10), we obtain

lim
S→+∞

mse
(GThres)
k (S) = E

[
I
(
|n|2 ≥ α

)
|n|2

]
= w(α).

Therefore, in the low SNR regime, the GThres estimator
performs like

MSE(GThres) (S) '0 MSE(LS) (S) e−α (1 + α) . (23)

C. Discussion

The asymptotic MSE behavior of the GMMSE and GThres
estimators is summarized in Table I. A plot is given in Figure
1. We compare their limiting behavior with the (unstructured)
LS estimator and with the Oracle estimator, which assumes
the HSD model, perfect knowledge of as, and treats cs as a
deterministic unknown vector.

The latter, by knowing as, performs an LS estimate of cs
and an MMSE of hd. Its MSE as a function of the SNR matrix
S is given by

MSE(Oracle) (S)=qMSE(LS) (S)+
1− q
L

L−1∑
k=0

Pd(k)

1 + Sk,kPd(k)
.

The limiting MSE behavior in the table is normalized to
MSE(LS) (S). Then, a value smaller than 1 indicates that the
estimation accuracy, in the corresponding regime, improves
over LS. Moreover, the smaller the value, the better the
asymptotic MSE accuracy.

TABLE I
ASYMPTOTIC MSE BEHAVIOR OF LS, Oracle, GMMSE AND GThres

ESTIMATORS.
α = ln

(
1−q̃
q̃

)
, g(α) = e−α ln (1 + eα) , w(α) = e−α (1 + α).

MSE(X)(S)

MSE(LS)(S)

High SNR, High SNR, Low SNR
Λd = 0 Λd � 0

LS,GThres, α ≤ 0 1 1 1

Oracle q 1 q

GMMSE q + (1− q)g(α) 1 g(α)

GThres, α > 0 q + (1− q)w(α) 1 w(α)

Notice that, in the high SNR with diffuse component, all
estimators achieve the LS MSE accuracy. In fact, in the high
SNR the diffuse component is strong compared to the noise
level, i.e., Pd(k) � 1/Sk,k, hence the observed channel

exhibits a dense structure, yielding the same accuracy as the
LS estimator.

On the other hand, in the high SNR with no diffuse com-
ponent, the GMMSE and GThres estimators achieve a better
estimation accuracy than LS. Their limiting behavior can be
explained as follows. When as(k) = 1 (with probability q), the
active sparse coefficients cs(k), which are much stronger than
the noise background in the high SNR, are always correctly
detected, and are estimated with the same estimation accuracy
as LS. On the other hand, when as(k) = 0 (with probability
1 − q), the GMMSE (respectively, GThres) estimator incurs
a mis-detection error MSE(LS)(S)g(α) (MSE(LS)(S)w(α)),
due to strong noise samples which are mis-detected as active
sparse components.

Moreover, since g(α) and w(α) are decreasing functions
of α ∈ R (i.e., increasing functions of q̃ ∈ (0, 1)),
with limα→−∞ g(α) = w(0) = 1 and limα→+∞ g(α) =
limα→+∞ w(α) = 0, the MSE is a decreasing function of
α (i.e., an increasing function of q̃). In particular, for small
values of α, the estimates of as in (4) approach 1 for both
the GMMSE and the GThres estimators, hence the overall
HSD estimate (3) approaches the LS solution, yielding the
same LS accuracy. Conversely, for increasing values of α, the
GMMSE and GThres estimators approach the MSE accuracy
of the Oracle estimator. Note that, the larger α, the larger
the threshold level of the GThres estimator in (4), hence
the fewer noise samples are mis-detected as active sparse
components, and the smaller the overall mis-detection error
and MSE accuracy (a similar interpretation holds for the
GMMSE estimator).

Similarly, in the low SNR, the MSE of the GMMSE and
GThres estimators is a decreasing function of α. In particular,
a better MSE than the Oracle estimator is achieved for α
sufficiently large. In fact, the main source of error is associated
with the LS estimates of the sparse coefficients. On the
other hand, the MMSE estimate of the diffuse component is
forced to zero at small SNR values, hence the resulting MSE
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.
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approaches the channel energy floor. Therefore, the larger α
(alternatively, the smaller q̃), the smaller the weight given to
the LS estimates of the sparse coefficients in (3) with respect to
the MMSE estimates of the diffuse coefficients, and the better
the estimation accuracy. In the limit α→ +∞ (i.e., q̃ → 0+),
the GMMSE and GThres estimators treat the channel as being
purely diffuse, hence the MMSE estimate of the channel is
forced to zero and the MSE approaches the channel energy
floor.

We conclude that, in the asymptotic SNR regimes, using
α > ln 1−q

q (i.e., q̃ < q) improves the performance of
the GMMSE and GThres estimators compared to assuming
the true sparsity prior q. Hence, it is beneficial to use a
conservative approach, i.e., to assume the sparse component
to be sparser than it actually is. However, this behavior does
not always hold for medium SNR, where in fact a larger α
(i.e., a smaller q̃) may induce a larger MSE. This behavior
can be seen by studying the two extreme cases α→ −∞ and
α → +∞, i.e., q̃ → 1 and q̃ → 0, respectively. In the first
case (α → −∞, q̃ → 1), the two estimators are equivalent
to LS, yielding the same MSE accuracy as LS. Conversely,
when α→ +∞ (i.e., q̃ → 0+), the channel is treated as being
diffuse only and is estimated via MMSE. The MSE in this
case is given by

MSE(Diff)(S) =
1

L

L−1∑
k=0

E

[∣∣∣∣ Sk,kPd(k)

1 + Sk,kPd(k)
hLS(k)− h(k)

∣∣∣∣2
]

=
1

L

L−1∑
k=0

(
q

Ps(k)

(1 + Sk,kPd(k))
2 +

Pd(k)

1 + Sk,kPd(k)

)
, (24)

which performs worse than LS, for any value of the SNR
matrix S, for sufficiently large values of Ps(k), k = 0, . . . , L−
1. Hence, in medium SNR we expect a trade-off between large
values of α (i.e., small values of q̃), which induce sparsity in
the estimate of the sparse component, and small values of α,
which, on the other hand, induce a less sparse solution and
privilege the diffuse channel component.

It is worth noting that the MMSE estimator of the channel,
which assumes perfect knowledge of q, Λs and Λd, minimizes
the MSE when the true sparsity level q̃ = q is employed. We
conclude that the uncertainty about the sparse coefficients,
which are treated as deterministic and unknown under the
GMMSE and GThres estimators, is compensated by employ-
ing a conservative approach in the estimation of the sparse
component.

Finally, for a given value of α, the GMMSE estimator
achieves a better MSE accuracy than the GThres estimator, in
the asymptotic regimes. In fact, the MMSE estimate of as(k)
(4), i.e., the posterior probability of as(k) = 1, incorporates
also the reliability associated with an active sparse compo-
nent, and therefore, the closer the estimate to one, the more
likely an active sparse component. On the other hand, the
MAP estimate of as(k), by allowing only the two extreme
values of âs(k) ∈ {0, 1}, completely discards the reliability
associated with these estimates, thus incurring a performance
degradation.

V. ORTHOGONALITY VS NON-ORTHOGONALITY OF THE
PILOT SEQUENCE

Thus far, we have assumed an orthogonal pilot sequence,
which results in the optimality of per-tap estimation ap-
proaches versus joint estimation methods. In this section, we
consider the non-orthogonal pilot scenario. We follow two
approaches. In Section V-A, we examine the impact of using
an estimator designed under the assumption of an orthogonal
pilot sequence on received signals where the pilots are in fact
non-orthogonal. We show that, from an MSE perspective, the
effect of this mismatch can be characterized via an effective
SNR loss. In Section V-B, we establish a connection between
the GThres estimator and the classical sparse approximation
algorithms [22], [24]–[26].

A. GMMSE and GThres estimators with non-orthogonal
pilot sequence

Note that in the non-orthogonal case the SNR matrix
S is non-diagonal. In this case, the observation model as-
sociated with the kth delay bin is given by hLS(k) =

h(k) +
[√

S
−1

n
]
k
, where the noise term

[√
S
−1

n
]
k
∼

CN
(

0,
[
S−1

]
k,k

)
. Since the GMMSE and GThres esti-

mators, designed under the assumption of orthogonal pilot
sequence, operate on a per-tap basis, the non-orthogonal case
is obtained by replacing Sk,k with 1/

[
S−1

]
k,k

in (3) and (4).
We now evaluate the MSE performance loss induced by a

non-orthogonal pilot sequence. Let X be the corresponding
Toeplitz matrix. Then, the SNR matrix S = X∗X

σ2
w

has some
non-zero off-diagonal elements. The effective SNR at the
kth delay bin is S

(NO)
k , 1/

[
S−1

]
k,k

. Therefore, using
(5) and (6), in the non-orthogonal case we have, for X ∈
{GMMSE,GThres},

MSE(X) (S) =

L−1∑
k=0

MSE
(X)
k

(
1/
[
S−1

]
k,k

)
. (25)

Now, consider a second scenario where the pilot sequence
is orthogonal. Letting X̃ be the associated Toeplitz matrix,
and assuming that the pilot sequence has the same energy
budget as in the non-orthogonal case, we have the SNR matrix
S̃ = diag (S), where diag (B) is a diagonal matrix with the
same diagonal elements as B. The SNR at the kth delay bin
is S(O)

k , S̃k,k = Sk,k, and the resulting MSE is given by

MSE(X)
(
S̃
)

=

L−1∑
k=0

MSE
(X)
k (Sk,k) . (26)

We now prove that the effective SNRs in the non-orthogonal
and orthogonal cases satisfy S

(O)
k ≥ S

(NO)
k , ∀k. We can

rewrite S as

S = U

[
S

(O)
k b
b∗ ∆

]
U∗, (27)

for a proper ∆ � 0, row vector b, and permutation matrix U,
where we have used the fact that Sk,k = S

(O)
k . Then, from

the inversion formula for 2× 2 block-matrices, we have

S
(NO)
k =

1

[S−1]k,k
=
[
U∗S−1U

]−1

1,1
= S

(O)
k − b∆−1b∗.
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Finally, since ∆ � 0, we obtain b∆−1b∗ ≥ 0 (with
equality if and only if b = 0), which proves the inequality
S

(O)
k ≥ S

(NO)
k , ∀k. Therefore, imperfect orthogonality of

the pilot sequence yields a decrease of the effective SNR
experienced on each channel delay bin, thus impairing the
estimation performance.

We can quantify the loss in the estimation accuracy in
the high and low SNR regimes where, as shown in Sec-
tion IV, for the GMMSE and GThres estimators we have
limS→0(+∞) SMSE

(X)
k (S) = constant > 0, for a proper

constant, as given in Table I. To this end, we define the orthog-
onality coefficient of the pilot sequence associated with the kth
delay bin as the ratio between the effective SNR experienced
in the non-orthogonal case and the SNR experienced in the
orthogonal case, under the same pilot energy budget, i.e.,

ηk =
S

(NO)
k

S
(O)
k

=
1

[S−1]k,k Sk,k
≤ 1. (28)

Then, in the high and low SNR regimes, the ratio between
the MSE in the orthogonal case and the MSE in the non-
orthogonal case, in the kth channel bin, is given by

MSE
(X)
k

(
S

(O)
k

)
MSE

(X)
k

(
S

(NO)
k

)=
S

(NO)
k

S
(O)
k

×
S

(O)
k MSE

(X)
k

(
S

(O)
k

)
S

(NO)
k MSE

(X)
k

(
S

(NO)
k

)'ηk,
where we have used the fact that lim

S→0(+∞)
SMSE

(X)
k (S) =

constant and the definition (28).

B. Exploiting the non-orthogonality of the pilot sequence

We next investigate estimators designed for the non-
orthogonal case, by establishing a connection between the
GThres estimator and classical sparse approximation algo-
rithms [22], [24], [25].

In particular, we show that the GThres estimator solves{
ĉs, âs, ĥd

}
= arg max

cs,as,hd
p (hLS,as,hd|cs) . (29)

We have

p (hLS,as,hd|cs) = p (hLS|as,hd, cs) p (as) p (hd) , (30)

where

hLS| {as,hd, cs} ∼ CN
(
as � cs + hd,S

−1
)
, (31)

p (as) =

(
q

1− q

)‖as‖0
(1− q)L =

(
q

1− q

)‖hs‖0
(1− q)L,

hd ∼ CN (0,Λd) ,

where ‖x‖0 is the L0-norm of vector x, and hs = as � cs is
the sparse component.

Then, from (29) and (31), we have{
ĉs, âs, ĥd

}
= arg max

cs,as,hd

ln p (hLS,as,hd|cs) (32)

= arg min
hs=as�cs,hd

(hLS − hs − hd)
∗
S (hLS − hs − hs)

+ α ‖hs‖0 + h∗dΛ
−1
d hd,

where α = ln
(

1−q
q

)
. This can be viewed as an LS regression

problem, with a L0 regularization term associated with hs,
enforcing sparseness of the solution, and a L2 regularization
term associated with hd, enforcing its Gaussian nature.

Solving with respect to hd first, as a function of hs, we
have

ĥd (hs) = Λd

(
Λd + S−1

)−1
(hLS − hs) , (33)

and substituting this solution into the cost function, we obtain
the following optimization problem for the sparse component:

ĥs = âs � ĉs = (34)

arg min
hs

α ‖hs‖0 + (hLS − hs)
∗ (

Λd + S−1
)−1

(hLS − hs) .

In the orthogonal pilot case, the SNR matrix S is diagonal
and the optimization problem (34) factorizes into L separate
problems, one for each channel delay bin, yielding the same
solution as the GThres estimator (4). Conversely, in the non-
orthogonal case, the optimal solution requires a combinatorial
search over the 2L realizations of as. This is circumvented by
the use of sparse approximation algorithms [22], [27].

An equivalent problem has been addressed in [22], namely

ẑ = arg min
z∈CL

‖w − Φz‖22 + λ ‖z‖0 , (35)

where w is a noisy version of Φz, and Φ is known, with
IL − Φ∗Φ � 0. Equation (34) is equivalent to (35) by letting
w =

√
ρ
(
Λd + S−1

)− 1
2 hLS, Φ =

√
ρ
(
Λd + S−1

)− 1
2 , λ =

ρα, and z = hs, where ρ > 0 is chosen so as to guarantee
IL−Φ∗Φ � 0. The Iterative Thresholding Algorithm proposed
in [22] may then be used to estimate hs, and equation (33) to
estimate the diffuse component hd.

Alternatively, in [24], [25] the L0 cost associated with hs
is relaxed and the L1 regularization norm is used instead, thus
yielding the convex problem

ĥs=argmin
hs

(hLS−hs)
∗(

Λd+S−1
)−1

(hLS−hs)+α ‖hs‖1 ,

where we define the L1-norm ‖hs‖1 =
∑
k |hs(k)|.

As justified by the MSE analysis (Section IV), a conserva-
tive q̃ < q may be assumed in the estimation of the sparse
component, by using α = ln

(
1−q̃
q̃

)
> ln

(
1−q
q

)
.

VI. SIMULATION RESULTS

In this section, we present the simulation results, and
evaluate the performance achievable with the above estimation
strategies, from both an MSE (as defined in (5)) and a BER
perspectives. In particular, we use two different approaches. In
Section VI-A, we evaluate the performance of the GMMSE
and GThres estimators in a system whose channel perfectly
follows the HSD model, and compare it with the asymptotic
MSE behavior derived in Section IV. Moreover, we evaluate
the performance of the estimators under a non-orthogonal pilot
sequence, as discussed in Section V. In Section VI-B, we
evaluate the BER and MSE performance of an OFDM-UWB
system in a more realistic UWB channel emulator developed
in [18], which we refer to as K&P model in the following. This
approach is important as a validation of the HSD model, of the
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Fig. 2. MSE of the GMMSE and GThres estimators, for the HSD channel
model. The bold lines with the corresponding markers represent the low SNR
MSE behavior. The high SNR behavior is given by the LS estimate. β = 0.01,
q = 0.1.

GMMSE and GThres estimators and of the analysis we have
developed. We argue that the K&P model is more suitable than
the model in [19] to evaluate the robustness and sensitivity of
the proposed HSD channel estimation strategies to deviations
from the HSD model. In fact, as explained in more detail in
Section VI-B, K&P models the diffuse component as a diffuse
tail associated with each specular component, whereas in the
HSD model the diffuse and sparse components are assumed to
be independent. Therefore, it represents a deviation from the
HSD model. In contrast, the model developed in [19] exhibits
a better fit to the HSD model, since the diffuse component is
generated independently of the specular MPCs arrivals.

Unless otherwise stated, we assume an orthogonal pilot
sequence, so that S is diagonal. For simplicity, we assume
that S = S · IL, for some S > 0, so that we can rewrite the
observation model (2) as

hLS = h +
√
S
−1

n. (36)

Moreover, we define the estimation SNR as the average esti-
mation SNR per channel entry, SE[h∗h]/L.

A. Hybrid Sparse/Diffuse channel model

In this section, we compare the MSE accuracy of the
GMMSE and GThres estimators with the asymptotic behavior
derived in Section IV, for a channel drawn according to the
HSD model developed in Part I. We refer the interested reader
to Part I for a more comprehensive MSE and BER analysis.

For the simulation results, we generate a channel h ∈ CL
with delay spread L = 100. The sparsity pattern as ∼ B(q)L,
with parameter q = 0.1. The vector cs ∼ CN (0,Λs), where
the covariance matrix Λs is diagonal, with exponential PDP
Λs(k, k) = Ps(k) = Pse

−ωk, and ω = 0.05. The diffuse
component hd ∼ CN (0,Λd), where the covariance matrix
Λd is diagonal, with exponential PDP Λd(k, k) = Pd(k) =
βPse

−ωk. The parameter Ps > 0 is a normalization factor,
and is chosen so that the average channel energy is L, i.e.,∑L−1
k=0 E

[
|h(k)|2

]
= Ps

∑L−1
k=0 (β + q)e−ωk = L.
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Fig. 3. MSE of the GMMSE and GThres estimators, for the HSD channel
model. The bold lines with the corresponding markers represent the high/low
SNR MSE behavior. β = 0 (no diffuse component), q = 0.1.

We compare the GMMSE and GThres estimators,
for different values of the assumed sparsity level q̃ ∈
{0.1, 0.01, 0.001} (i.e., α = ln

(
1−q̃
q̃

)
∈ {2.2, 4.6, 6.9}),

with the asymptotic MSE behavior derived in Section IV. For
performance comparison, we also consider the unstructured
LS estimator and the MMSE estimator [20], which assumes
perfect knowledge of q, Λd and Λs, and thus performs an
MMSE estimate of the channel. Note that the latter represents
a lower bound to the estimation accuracy. This is primarily
used as a reference.

In Figure 2, we plot the MSE of the estimators as a function
of the estimation SNR, and their asymptotic MSE behavior
(bold lines, with the corresponding markers for the different
values of α), for the case where the diffuse component is
present with relative power β = 0.01. We note that there is
a perfect match between the MSE in the high and low SNR
regimes, and the asymptotic analysis developed in Section IV.
In particular, from an MSE perspective, it is confirmed that it
is beneficial to use a conservative approach in the estimation
process, i.e., by assuming the sparse component to be sparser
than it actually is. Also, as predicted by the MSE analysis, the
GMMSE estimator outperforms the GThres estimator, in the
asymptotic regimes.

Notice that, for the set of values of q̃ considered in these
previous figures, the optimality of a conservative approach
holds also in the medium SNR range. However, this is not
always true, as we have discussed in Section IV and as we
can observe for the "only diffuse" estimator, which ignores
the sparse component. This can be interpreted as the limiting
estimator for GMMSE and GThres when α→ +∞ (q̃ → 0).

In Figure 3, we plot the MSE of the estimators as a function
of the SNR S, for the case with no diffuse component, β = 0.
Even in this case, we notice a perfect match between the
MSE in the high and low SNR regimes, and the asymptotic
analysis in Section IV. In particular, the larger the factor α
used (the smaller q̃), the better the estimation accuracy. Unlike
Figure 2, where the MSE approaches the LS estimate for
high SNR, in this case we note a performance improvement.
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Fig. 4. Comparison between the non-orthogonal and orthogonal pilot se-
quence cases. β = 0.01, q = 0.1.

In fact, when β = 0, the estimate of hd is forced to zero.
Therefore, whenever the GThres estimator correctly detects
âs(k) = as(k) = 0, the channel component h(k) is estimated
with no error. On the other hand, when β > 0, a residual
MMSE estimation error is incurred.

In Figure 4, we compare the MSE of the GThres esti-
mator for the non-orthogonal and orthogonal pilot sequence
cases, under the same pilot energy budget, as discussed in
Section V-A. Moreover, we plot the curves associated with
the modified Iterative Thresholding Algorithm (ITH), designed
in Section V-B based on a variation of [22] which takes
into account the presence of the diffuse component. The
non-orthogonal pilot sequence is generated from a CAZAC
sequence of length M = 50 = L/2 [28]. As expected,
we observe a performance loss in the non-orthogonal case,
compared to the orthogonal pilot scenario with the same pilot
energy budget. In fact, the GThres estimator, by employing
a per-tap estimation approach, neglects any correlation among
the channel taps, thus incurring a performance degradation.
We measured that the orthogonality coefficient (28) ranges in
the interval ηk ∈ [0.625, 0.765] (note that this is a function of
the delay k ∈ {0, . . . , L− 1}), corresponding to an SNR loss
in the range [1.16, 2.05] dB. These values are confirmed by
simulation, where the SNR loss induced by GThres under a
non-orthogonal pilot sequence (by averaging over all channel
delay taps, as in (5)) is approximately [1.5, 2] dB. Interestingly,
the performance degradation incurred by the GThres estimator
is partially recovered (fully, in the low SNR regime) by the
ITH algorithm, which exploits the correlation introduced by
the non-orthogonal pilot sequence by estimating the channel
taps jointly.

B. Realistic UWB channel model

We now evaluate and compare the MSE and the BER
performance of the GMMSE and GThres estimators in a
more realistic UWB channel, which does not follow the HSD
model. This allows us to evaluate how sensitive the estimation
performance is to the type of channel we are operating in.

We evaluate the BER performance induced by channel es-
timation errors in an OFDM-UWB system, with Ndft = 2048
sub-carriers, 4-QAM constellation and transmission bandwidth
B. In the estimation phase, we use an orthogonal pilot
sequence. This may be achieved, for example, by allocating
an OFDM symbol with a constant modulus pilot sequence.
Since we want to evaluate the impact of channel estimation
errors on the BER performance, we consider a noise-free
setting, i.e., no noise is added to the information symbols,
whereas noise is added in the estimation phase, so as to
induce channel estimation errors. In particular, let X(n) be
the 4-QAM symbol transmitted on the nth sub-carrier, and
H(n) =

∑L−1
l=0 h(n)e

−i2π ln
Ndft be the Ndft-points DFT of the

channel, where n ∈ {0, . . . , Ndft − 1}. Then, the received
symbol is Y (n) = H(n)X(n). This is equalized by using
the estimate Ĥ(n) of H(n), i.e., X̃(n) = H(n)

Ĥ(n)
X(n), and

the decision is based on a minimum distance criterion, i.e.,
X̂(n) = minx∈4−QAM |X̃(n)− x|2.

We use the K&P model [18], which is suited to indoor
environments. This model combines both a geometric ap-
proach for the resolvable individual specular components
(echoes), arising from reflections from the scatterers in the
environment, and a statistical approach for the dense multipath
clusters associated with each echo. The model also includes
a frequency dependent gain decay, so that the overall channel
transfer function is expressed as

H(f) =
∑
l

Al(τl) (1 +Dl(f)) e−i2πfτl×

×
(

1 +
f

f0

)−ν
I
(
|f | ≤ B

2

)
, (37)

The sum is over the individual echoes, with the lth echo
having amplitude Al(τl) and delay τl. Dl(f) is the multipath
cluster associated with the lth echo, with exponential PDP and
circularly symmetric Gaussian distribution in the time-domain,
ν is the frequency domain decay exponent, f0 is the center
frequency, and B < R is the transmission bandwidth.

The time-domain baseband representation of the channel is
obtained by performing an inverse Fourier transform of (37),
and by sampling at rate R samples per ns. We further clip the
channel in the delay domain, so that only the channel window
carrying most of the energy is kept. This step determines the
delay spread of the channel (L = 600). The channel snapshot
is finally normalized to have energy L, i.e.,

∑L−1
l=0 |h(l)|2 = L.

It is worth noting that τl is quantized to discrete values,
and equals an integer number of the sampling interval R−1 ns.
This is a simplification, which guarantees that the MPC arrival
matches exactly the sampling period. Therefore, in general, the
K&P model [18] does not cope with the side-lobes of the sinc
pulse, which arise when the MPCs arrive in the middle of two
sampling times. However, the bandwidth limitation B < R
introduces a sinc filtering of the channel, so that the side-lobes
of the sinc pulse affect the channel impulse response.

We choose the Office LOS scenario in [18] for our simula-
tions. A summary of the main parameters are given in Table
II. In particular, 10000 channel snapshot are generated, each
corresponding to a different position of the mobile receiver
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TABLE II
MAIN PARAMETERS FOR THE Office LOS SCENARIO IN [18]

Ndft 2048 Number of channel samples in the delay domain
R 12.8 ns−1 Sampling rate in the delay domain
B 10GHz Bandwidth of the UWB system
f0 6GHz Center frequency
d0 0.8m Reference distance for individual echo power law
δ 3 Path loss exponent for individual echo power law

GMP −20 dB Cluster gain with respect to associated individual echo
GMP−LOS −13 dB Additional cluster gain for LOS individual echo

γ 10 ns Multipath cluster exponential decay parameter
ν 1.1 Frequency domain decay exponent

(xt, yt, zt) (1.78, 4, 1.5)m Coordinates of transmitter position
(xr, yr, zr) from (3.0, 1.5, 1.5)m to (4.5, 1.8, 1.5)m Coordinates of mobile receiver position

along the line connecting the points (3.0, 1.5, 1.5) m and
(4.5, 1.8, 1.5) m (where (x, y, z) m represents a point in the
three dimensional space with coordinates x, y and z, measured
in m relative to the origin). For each position of the mobile
receiver, the arrival pattern of the resolvable MPCs, i.e., their
gain and delay, is determined by the relative positions of the
mobile receiver, transmitter and scatterers (these are positioned
on a grid in the three dimensional space). Moreover, for each
channel snapshot, we generate an independent realization of
the diffuse component (Rayleigh fading) and of the additive
noise. We refer the interested reader to [18] for further details.

It is worth noting that the sparsity level q of the HSD model
is not defined for the K&P model. This parameter may be
roughly estimated as the ratio between the number of active
scatterers and the delay spread L. For the Office LOS scenario
defined in [18], we have 6 (virtual) scatterers and L = 600,
which gives q̂ ' 0.01. Moreover, the PDP estimator developed
in Part I for the HSD model assumes an exponential PDP
for the diffuse component, which is not defined for the K&P
model. In Figure 5, we plot the PDP of a channel snapshot
as an example, and the exponential PDP fitting, estimated
using the EM algorithm developed in Part I [20]. We note
a good fitting of the exponential PDP model to the PDP of
the channel realization. Remarkably, although the K&P model

0 10 20 30 40 50 60 70 80

10
−8

10
−6

10
−4

10
−2

Channel delay (ns)

P
ow

er
d
el
ay

p
ro
fi
le

 

 

Channel realization
Exponential PDP (EM algorithm)

Fig. 5. PDP of one realization of the K&P model (with parameters given in
Table II) and exponential PDP, estimated using the EM algorithm developed
in Part I [20].

defines the diffuse component as a diffuse tail associated with
each specular component, the overall effect, by summing the
contribution from all MPCs, is that of a unique PDP tail, which
fits well the exponential shape.

The channel and the PDP of the diffuse component are
estimated based on a single snapshot of the channel. In
particular, the PDP of the diffuse component is estimated using
the EM algorithm developed in Part I. Hence, the MSE and
BER results are not affected by the structure of the spatio-
temporal correlation of the channel.

Figures 6 and 7 plot the MSE of the GMMSE, GThres
and purely sparse and diffuse estimators, for different values
of the assumed sparsity level q̃. Since a per-tap approach is
optimal in this case, for the sparse estimator we choose a
variation of the GThres estimator, which assumes no diffuse
component (hd = 0). The diffuse estimator assumes a purely
diffuse channel, and performs a linear MMSE estimate based
on the estimated PDP of the diffuse component.

In Figure 6, we observe that, the smaller q̃ (i.e., the larger α),
the better the estimation accuracy of the GMMSE and GThres
estimators. Moreover, the GMMSE estimator outperforms the
GThres estimator, for a given value of q̃. This is the same
behavior, predicted by the MSE analysis in Section IV, that
we have observed in the case where the channel follows
the HSD model (Figure 2). Remarkably, we notice a perfect
match between the simulation results and the low/high SNR
asymptotic behavior of the estimators (bold lines). This is a
surprising result, if we consider that the K&P channel emulator
deviates from the HSD model, and the PDP of the diffuse
component is unknown and estimated from the data. However,
note that the value of the channel delay spread, L = 600,
allows sufficient averaging over the small scale fading in the
delay dimension, so that the PDP is accurately estimated.

Moreover, we notice that the diffuse estimator outperforms
the HSD estimators in the low SNR (< −12.5 dB). This is an
expected result, which is coherent with the simulation results
based on the HSD model (Figure 2) and with the asymptotic
analysis in Section IV, where we have proved that, in the low
SNR, the smaller q̃, the better the estimation accuracy (note
that the diffuse estimator corresponds to the limit case q̃ → 0).
In fact, the diffuse estimator forces the channel estimate to
zero in the low SNR, thus approaching the channel energy
floor. Conversely, a performance degradation is observed for
higher SNR values, with respect to the HSD estimators with



11

−30 −20 −10 0 10 20

10
−2

10
−1

10
0

10
1

10
2

10
3

Estimation SNR, SE[h∗h]/L (dB)

M
S
E

 

 

LS

GMMSE, q̃ =0.1

GThres, q̃ =0.1

GMMSE, q̃ =0.001

GThres, q̃ =0.001

Diffuse, q̃ = 0

Fig. 6. MSE of the GMMSE and GThres estimators, for the K&P channel
model, LOS-Office scenario. The bold lines with the corresponding markers
represent the low SNR MSE behavior. The high SNR behavior is given by
the LS estimate.

q̃ = 0.001, which achieve the best performance.
In Figure 7, we notice that the GMMSE estimator achieves

better performance than the sparse estimator, for the same
values of q̃. In fact, the sparse estimator does not effectively
capture the diffuse component of the channel, thus incurring
a performance degradation, mainly in medium and high SNR
(in particular, in the high SNR range (> 5 dB), it performs
even worse than LS).

Figure 8 plots the BER associated with the GMMSE, LS,
purely sparse and diffuse estimators, for different values of q̃.
The SNR is referred to the output of an ideal Rake receiver
with perfect channel knowledge, where the estimation noise
is treated as additive Gaussian noise at the receiver. This
is defined as SNRrake = Sh∗h. A 4-QAM constellation
is employed with Gray mapping, and the bit sequence is
uncoded. Note that some sub-carriers may have a very small
channel amplitude, thus inducing high BER. Therefore, in
Figure 8 we plot the BER averaged over only the "good"
sub-carriers, which are chosen based on the heuristic carrier
selection scheme{

k : |H(k)|2 ≥ λmax
n
|H(n)|2

}
, (38)

where λ ∈ (0, 1) is a threshold value. In particular, we choose
λ such that 30% of the sub-carriers are classified as "good".
The rationale behind this choice is that, in a practical system,
the "bad" sub-carriers would never be used, since they are not
suitable to carry information.

Generally, we observe that the better the MSE estima-
tion accuracy, the smaller the BER. In particular, the best
performance is achieved by the GMMSE estimator with
q̃ = 0.001. Moreover, similarly to the MSE, also the BER
benefits from a conservative approach in the estimation of the
sparse component, i.e., it is beneficial to use small values of
q̃. We notice that a poor BER performance is incurred by the
purely sparse estimator which, in the high SNR, performs even
worse than LS. Similarly, the diffuse estimator performs worse
than GMMSE with q̃ = 0.001 in the medium SNR range. As
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Fig. 7. MSE of the GMMSE and Sparse estimators, for the K&P channel
model, LOS-Office scenario.

in the MSE case, the purely sparse and diffuse estimators are
unable to exploit both the diffuse and sparse components of
the channel jointly, thus incurring a performance degradation.
Finally, we observe an irregular behavior of the GMMSE
and sparse estimators with q̃ = 0.001 around 18 dB SNR.
We argue that this is a consequence of the fact that we do
not average over independent realizations of the surrounding
environment, i.e., we use the particular Office LOS in [18],
which specifies the relative positions of the scatterers, and of
the transmitter/receiver pair as well.

These results show that the GMMSE and GThres esti-
mators effectively capture the main UWB propagation phe-
nomena, e.g., the resolvable MPCs of the channel, modeled
by a sparse component, unresolvable MPCs, scattering from
rough surfaces and frequency dispersion, which are better
modeled by a diffuse component. Also, we observe that a
small performance degradation is incurred by the diffuse
estimator. However, we argue that one of the strengths of the
proposed HSD model and channel estimation strategies relies
in their robustness and adaptability to different scenarios of
interest, where the channel exhibits a sparse, diffuse or hybrid
nature. Conversely, a diffuse (respectively, sparse) estimator is
expected to perform poorly in sparse (diffuse) channels.

VII. CONCLUSIONS

In this paper, we have further investigated the Hybrid
Sparse/Diffuse (HSD) model developed in Part I of this paper
[20]. Specifically, we have carried out an MSE analysis of
the GMMSE and GThres estimators, for the scenario where
the statistics of the sparse component are unknown at the
receiver, in the asymptotic regimes of high and low SNR.
Simulation results are provided, for a channel following the
HSD model, showing that the MSE performance of these
estimators agrees with the expected asymptotic behavior. This
analysis suggests that it is beneficial, from an MSE perspec-
tive, to use a conservative approach in the estimation of the
sparse component, i.e., to assume the sparse component to
be sparser than it actually is. While this result cannot be
extended to medium SNR, simulation results show that a
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Fig. 8. BER induced by channel estimation errors, for the K&P channel
model, LOS-Office scenario. The BER is averaged over the "good" sub-
carriers only (38).

similar behavior often holds in this regime. Moreover, we
have analyzed the case with a non-orthogonal pilot sequence,
and shown that the GThres estimator can be recast as a
modification of a sparse approximation algorithm proposed
in the literature. Finally, we have evaluated these estimation
schemes using a more realistic geometry-based stochastic
UWB channel emulator, developed in [18]. Simulation results
for this case show that the GMMSE and GThres estimators
achieve better performance, in terms of both MSE and BER,
than conventional unstructured (Least Squares) and purely
sparse or diffuse estimators, thus suggesting that, although
simplified (e.g., compared to [14]), the HSD model is able to
capture key UWB propagation mechanisms, such as resolvable
MPCs, diffuse scattering from rough surfaces, unresolvable
MPCs, and frequency dispersion.
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APPENDIX

Lemma 1 (Exchanging the limit with the expectation). For
the GMMSE and GThres estimators of the kth channel delay
bin ĥ (y), where y = h +

√
S
−1
n is the observation, h =

ascs +
√
Pdhd is the HSD channel bin, n is the noise in the

kth delay bin, we have, for X ∈ {GMMSE,GThres},

lim
S→Slim

mse
(X)
k (S) = E

[
lim

S→Slim

f (X)
(√

Sy, n
)]
,

where Slim ∈ {0,+∞}, and mse
(X)
k (S) and f (X)

(√
Sy, n

)
are defined in (9) and (8), respectively.

Proof. Note from (3) that, for X ∈ {GMMSE,GThres}, we
can write

ĥ(y) = r(X)
(√

S|y|
)
y, (39)

where r(X) (z), for z ≥ 0, is given by

r(X) (z) = φ(X) (z) +
(

1− φ(X) (z)
) SPd

1 + SPd
. (40)

The function φ(X) (z) is the estimate of the sparsity bit as
conditioned on |y| =

√
S
−1
z, and its expression depends on

the chosen estimator X ∈ {GMMSE,GThres}, specifically,
from (4),

φ(X) (z)=

{ 1

1+eα exp
{
− z2

1+SPd

} , X = GMMSE,

I
(
z2 ≥ α (1 + SPd)

)
, X = GThres.

(41)

Let {Sj > 0, j = 0, . . . ,+∞} be a generic SNR sequence,
indexed by j, such that limj→+∞ Sj = Slim. From Lebesgue’s
Dominated Convergence Theorem [29], if there exists a func-
tion g(X)(h, n) such that{ ∣∣f (X)

(√
Sjh+ n, n

)∣∣ ≤ g(X)(h, n) a.e., ∀j
E
[
g(X)(h, n)

]
< +∞, (42)

where a.e. stands for almost everywhere, i.e., the inequality
holds except on a set with probability measure zero (with re-
spect to the random variables hd ∼ CN (0, 1), n ∼ CN (0, 1),
as ∼ B(q) and cs), then

lim
j→+∞

mse
(X)
k (Sj) = E

[
lim

j→+∞
f (X)(

√
Sjh+ n, n)

]
.

If this property holds for any SNR sequence such that
limj→+∞ Sj = Slim, then

lim
S→Slim

mse
(X)
k (S) = E

[
lim

S→Slim

f (X)(
√
Sy, n)

]
,

and the Lemma is proved.
We now prove the existence of such a function g(X) (·). Let

x =
√
Sy. Then, from (8) and (39), we have

f (X)(x, n)=
∣∣∣r(X)(|x|)x−

√
Sh
∣∣∣2= ∣∣∣(1− r(X)(|x|)

)
x− n

∣∣∣2,
where in the last step we used the fact that

√
Sh = x − n.

Using the inequality |A+B|2 ≤ 2|A|2 + 2|B|2, we have

f (X)(x, n) ≤ 2
(

1− r(X) (|x|)
)2

|x|2 + 2 |n|2 . (43)

Moreover, from (40), we have, ∀x ∈ C,

1−r(X) (|x|)=
(

1− φ(X)(|x|)
) 1

1 + SPd
≤1− φ(X)(|x|) .

Letting m(X)(|x|) =
(
1− φ(X) (|x|)

)
|x|, we finally obtain

f (X)(x, n) ≤ 2m(X)(|x|)2 + 2 |n|2.
In order to proceed, we distinguish between the estimators.
1) Generalized MMSE Estimator:

For the GMMSE estimator, using the expression of
φ(GMMSE) (|x|) in (41), we have

m(GMMSE)(|x|)=
eα exp

{
−|x|2

}
|x|

1 + eα exp {−|x|2}
≤ eα exp

{
−|x|2

}
|x|.

The right hand side is maximized at |x| = 1√
2

, and therefore
we obtain the bound m(GMMSE)(|x|) ≤ eα 1√

2e
. Then, we have

the following bound on f (GMMSE)(x, n):

f (GMMSE)(x, n) ≤ e2α−1 + 2 |n|2 , g(GMMSE)(h, n). (44)

g(GMMSE)(h, n) is an integrable function, in fact
E
[
g(GMMSE)(h, n)

]
= e2α−1 + 2 < +∞.
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2) Generalized Thresholding Estimator:
For the GThres estimator, using the expression of
φ(GThres) (|x|) in (41), we have m(GThres)(|x|) =
I
(
|x|2 < α

)
|x|. For |x| ≥

√
α, we have m(GThres)(|x|) = 0.

On the other hand, for |x| <
√
α, we have m(GThres)(|x|) =

|x| ≤
√
α. In general, m(GThres)(|x|) ≤

√
α, ∀|x| ≥ 0, and

therefore

f (GThres)(x, n) ≤ 2α+ 2 |n|2 , g(GThres)(h, n).

g(GThres)(h, n) is an integrable function, in fact we have

E
[
g(GThres)(h, n)

]
= 2α+ 2 < +∞. (45)

The Lemma is thus proved.

Lemma 2. We have, for n ∈ CN (0, 1),

E

[
|n|2

(1 + eα exp{−|n|2})2

]
= e−α ln (1 + eα) . (46)

Proof. We have

E

[
|n|2

(1 + eα exp{−|n|2})2

]
=

∫ +∞

0

x

(1 + eα−x)
2 e
−xdx (47)

= lim
t→+∞

∫ t

0

x

(1 + eα−x)
2 e
−xdx,

where we have used the substitution x = |n|2, and the fact
that, since n ∼ CN (0, 1), x ∼ E(1).

Let B(x) = e−α

1+eα−x and B′(x) , dB(x)
x = e−x

(1+eα−x)2 .
Then, from (47) we have

E

[
|n|2

(1 + eα exp{−|n|2})2

]
= lim
t→+∞

∫ t

0

xB′(x)dx. (48)

By solving the integral in the limit by parts, we have∫ t

0

xB′(x)dx = tB(t)−
∫ t

0

B(x)dx (49)

= tB(t)− e−α ln
(
et + eα

)
+ e−α ln (1 + eα) ,

where in the last step we used the fact that B(x) =
e−α d

dx ln (ex + eα). Finally, the result is straightforwardly
obtained by substituting the expression above in (48), and by
letting t→ +∞.
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